Single-channel kinetics of BK (Slo1) channels

نویسندگان

  • Yanyan Geng
  • Karl L. Magleby
چکیده

Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca(2+)- and voltage-activated K(+) (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca(2+) and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with five closed states on the upper tier and five open states on the lower tier. The modular structure and joint Ca(2+) and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca(2+) and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca(2+) and depolarization thus activate by mainly destabilizing the closed states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dominant-negative regulation of cell surface expression by a pentapeptide motif at the extreme COOH terminus of an Slo1 calcium-activated potassium channel splice variant.

Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels regulate the physiology of many cell types. A single vertebrate gene variously known as Slo1, KCa1.1, or KCNMA1 encodes the pore-forming subunits of BK(Ca) channel but is expressed in a potentially very large number of alternative splice variants. Two splice variants of Slo1, Slo1(VEDEC) and Slo1(QEERL), which differ at the extreme COOH ...

متن کامل

Single Channel Recordings Reveal Differential β2 Subunit Modulations Between Mammalian and Drosophila BKCa(β2) Channels

Large-conductance Ca2+- and voltage-activated potassium (BK) channels are widely expressed in tissues. As a voltage and calcium sensor, BK channels play significant roles in regulating the action potential frequency, neurotransmitter release, and smooth muscle contraction. After associating with the auxiliary β2 subunit, mammalian BK(β2) channels (mouse or human Slo1/β2) exhibit enhanced activa...

متن کامل

Glycine311, a determinant of paxilline block in BK channels: a novel bend in the BK S6 helix

The tremorogenic fungal metabolite, paxilline, is widely used as a potent and relatively specific blocker of Ca(2+)- and voltage-activated Slo1 (or BK) K(+) channels. The pH-regulated Slo3 K(+) channel, a Slo1 homologue, is resistant to blockade by paxilline. Taking advantage of the marked differences in paxilline sensitivity and the homology between subunits, we have examined the paxilline sen...

متن کامل

Two distinct effects of PIP2 underlie auxiliary subunit-dependent modulation of Slo1 BK channels

Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a critical role in modulating the function of numerous ion channels, including large-conductance Ca(2+)- and voltage-dependent K(+) (BK, Slo1) channels. Slo1 BK channel complexes include four pore-forming Slo1 (α) subunits as well as various regulatory auxiliary subunits (β and γ) that are expressed in different tissues. We examined the molecul...

متن کامل

Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA.

Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are well known for their functional versatility, which is bestowed in part by their rich modulatory repertoire. We recently showed that long-chain omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) found in oily fish lower blood pressure by activating vascular BK channels made of Slo1+β1 subunits. Here we exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014